

Filter Blocking Tendency Cold Soak Test

ASTM D2068, IP 387, IP PM EA/13

ASTM D7501, IP PM EA, CEN N 403, CGSB 3.0 No. 142

Rev 2.1

Tamson Instruments

est. 1878

CONTENT OF PRESENTATION

- ✓ What is a Filter Blocking Tendency (FBT) Test?
- ✓ Why is the FBT important?
- ✓ FBT Background
- ✓ Standards
- ✓ The FBT Method
- ✓ Tamson Filter Blocking Tendency-Tester
- ✓ Recommended TFBT Set-Up
- ✓ Competitive Advantages of TFBT
- ✓ Cold Soak Methods
- ✓ Set-Up TLB50 for Cold Soak

FBT

WHAT IS A FILTER BLOCKING TENDENCY (FBT) TEST?

- FBT is a calculated dimensionless value that defines the tendency of particulates in a fuel to plug or block a filter.
- For this test*, 300 mL of sample is pumped at a constant flow rate (20 mL/min) through a specified filter medium.
- Both pressure difference across the filter and the volume of fuel passing through the filter are monitored until the pressure reaches 105 kPa or the volume of fuel passing the filter medium reaches 300 mL.

Tamson Instruments

*ASTM D2068 and IP 387

FBT

WHAT IS A FILTER BLOCKING TENDENCY (FBT) TEST

Table 1: 300 mL Passed	
kPa	FBT
20	1.017979
40	1.070105
60	1.151751
80	1.257179
100	1.380952
105	1.414214

Table 2: Overpressure	
ml	FBT
10	30.01666
20	15.0333
30	10.04988
40	7.566373
50	6.082763
100	3.162278
150	2.236068
200	1.802776
250	1.56205
300	1.414214

- When 300 mL of fluid is pumped, the end pressure is used to calculate the FBT number (please see table 1).
- Or, when the pressure reaches 105 kPa before the 300 mL of fluid is passed, the volume of fluid pumped at this point is used to calculate the FBT number (please see table 2).

Tamson Instruments

Importance

FILTER BLOCKING TENDENCY TODAY

- Fuels which have a high FBT could potentially block filters in the distribution network or during use in a vehicle, vessel, train, power plant, or aircraft.
- Cold flow issues with BX fuels containing bio components have resulted in the test method IP PM EA/13 to check the quality of FAME and (blended) diesel fuels to avoid major fuel operability problems.
- Fuel cleanliness is also an important issue as modern fuel injectors and injection pumps are being manufactured to more precise tolerances. Particle contamination, degradation, or corrosion of pipelines and storage tanks can quickly block filtration systems.



Importance

FILTER BLOCKING TENDENCY TODAY - EXAMPLES

Examples of FBT problems

- Vehicle filter clogged by brown sludge.
- Fuel storage tanks contain white waxy material which can be harmful for a filter

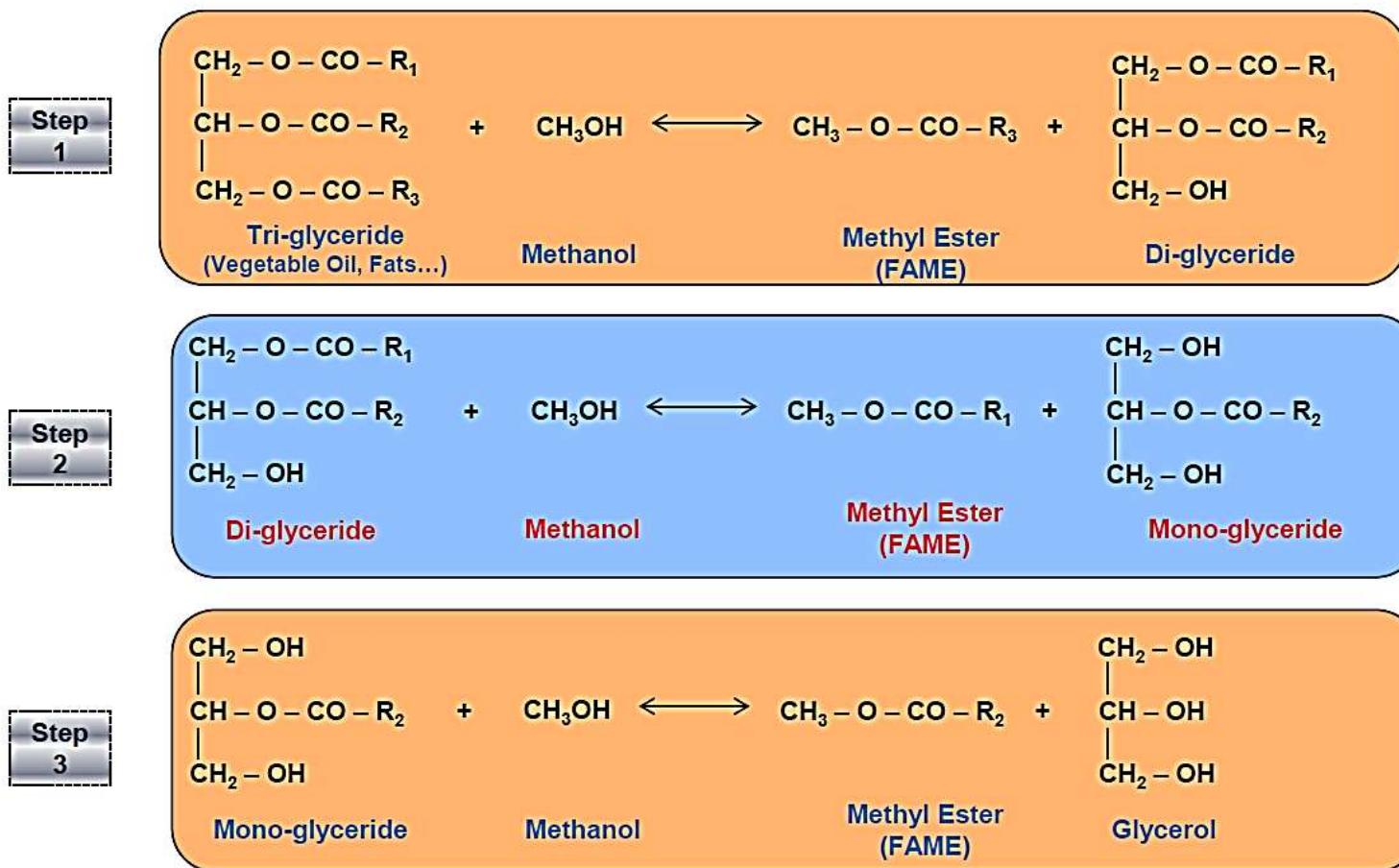
Oil Filters Can Clog with Deposits due to Biodiesel Degradation

Importance

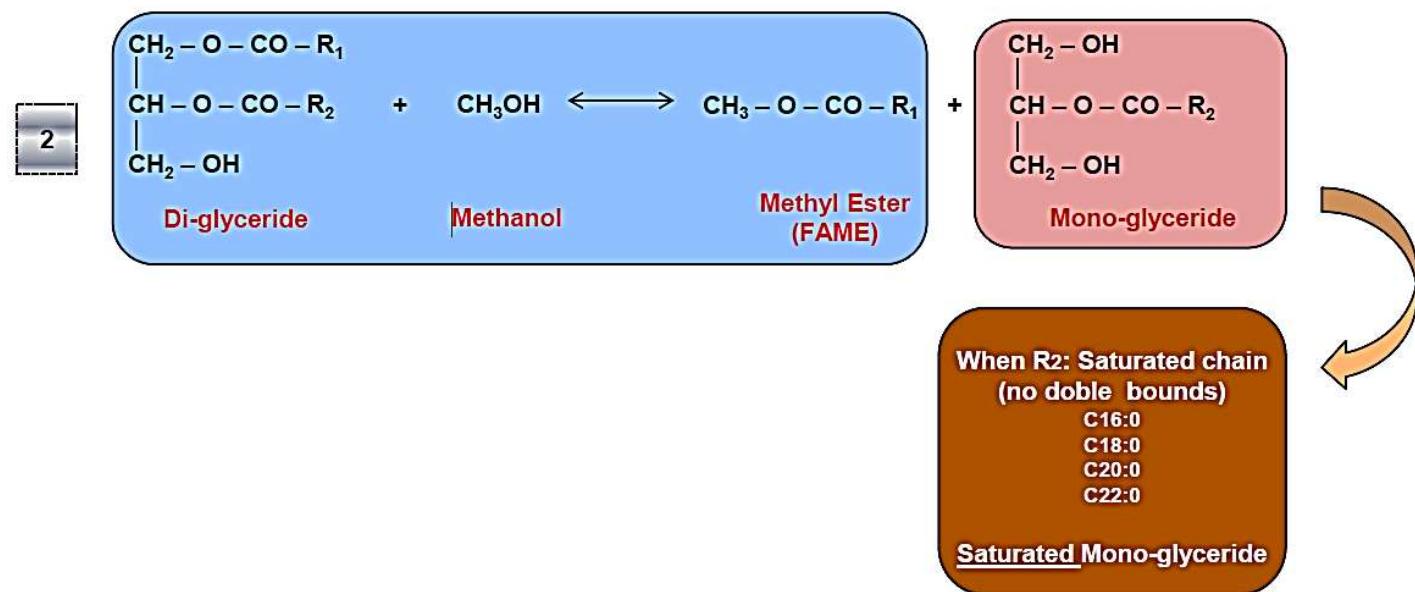
FILTER BLOCKING TENDENCY TODAY - EXAMPLES

Two examples of B5 samples with a floating layer at the top.

Importance


FILTER BLOCKING TENDENCY TODAY - STEROL GLUCOSIDES (SGs)

- The presence of Sterol Glucosides (SGs) in vegetable oils (soybean and palm) is a well-known fact.
- Vegetable oil refining technologies don't remove all of these SGs molecules.
- SGs are insoluble in FAME as well as in fossil fuel at very low contents. Ambient temperature and storage time of FAME are critical to establish a solubility limit.
- Some market issues in USA and Europe related with filter blocking have been linked with the presence of very low levels of SGs in the fuel.


Importance

FILTER BLOCKING TENDENCY TODAY – SATURATED MONOGLYCERIDES (SMGs)

FILTER BLOCKING TENDENCY TODAY – SATURATED MONOGLYCERIDES (SMGs)

During the transesterification process it could happen that the reaction is not complete and finalizes in the di-glyceride step (1) or mono-glyceride step (2).


Importance

FILTER BLOCKING TENDENCY TODAY – SATURATED MONOGLYCERIDES (SMGs)

- Total Monoglyceride content in FAME depends on:
 - Optimization of the transesterification production process.
 - Feedstock used to produce FAME.
- In general, the ratio of Saturated Monoglyceride is equivalent to the ratio of Saturated Methyl Ester in the FAME.
- Saturated component ratio depends on feedstock used:
 - Saturated Content in **Palm** Methyl Ester: 45-50%
 - Saturated Content in **Soy** Methyl Ester: 12-17%
 - Saturated Content in **Rape** Methyl Ester: 5-8%
- Monoglycerides are compounds with a limited solubility in the FAME. SMGs solubility gets substantially worse.
- Higher solubility problems of SMGs in FAME than in diesel (fossil fuel).

FILTER BLOCKING TENDENCY TODAY – BACKGROUND

Sample 1

Sample 2

Sample 3

Sample 1:

B5 made with FAME 0.69
TMG and 0.33 SMG (165
mg/kg estimated SMG in
the B5). **Market Issues**

Sample 2:

B5 made with FAME 0.44
TMG and 0.20 SMG (100
mg/kg estimated SMG in
the B5). **Market Issues**

Sample 3:

B5 made with FAME 0.52
TMG and 0.15 SMG (75
mg/kg estimated SMG in
the B5) **No market issues**

Standards

ASTM

ASTM D2068 / IP 387 Determination Filter Blocking Tendency:

A test portion of the fuel to be analyzed is passed at a constant rate of flow (20 mL/min) through a specified filter medium. The pressure difference across the filter and the volume of fuel passing the filter are monitored until the pressure reaches 105 kPa or the volume of fuel passing the filter medium reaches 300 mL. The pressure and flow are then used to calculate the filter blocking tendency, where a low number indicates a good fuel.

ASTM D7501 FBT of Biodiesel (B100) by Cold Soak Filtration Test:

In this test method, 300 mL of biodiesel (B100) is stored at $4.5 \pm 0.5^{\circ}\text{C}$ for 16 hours, allowed to warm to $25 \pm 1^{\circ}\text{C}$, and vacuum filtered through a single 0.7 μm glass fiber filter at controlled vacuum levels of $\sim 70\text{--}85$ kPa.

IP

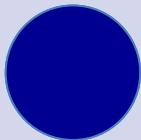
Standards

IP PM EA/13 Cold Soak and Filtration method of FAME or Diesel containing FAME:

A test portion of FAME is conditioned to remove its thermal history by heating at 60°C for two hours and then allowed to cool to 20°C. The test portion is then dissolved in low aromatic kerosine to prepare a 10% blend. The blend is placed in a water bath maintained at 5°C for 16 hours. It is then allowed to warm to 20°C and tested in accordance with IP 387 procedure B to determine its FBT.

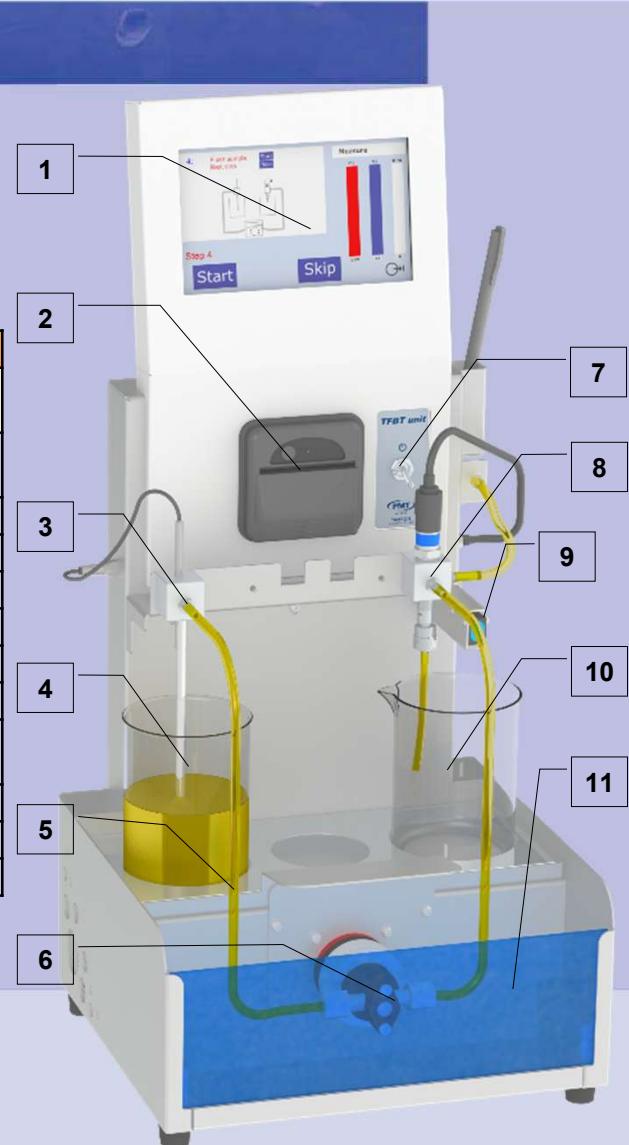
IP 618 Cold Filter Blocking Tendency:

Published in 2016. Basically two FBT tests are carried out at cold temperatures. More research is done. Reporting value for BS EN 590. Big question is whether the short cooldown time of the sample is reflecting the market issues (cold nights).

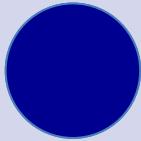

Standards

LATEST DEVELOPMENTS

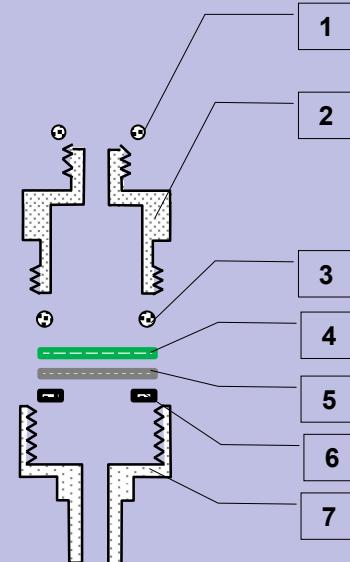
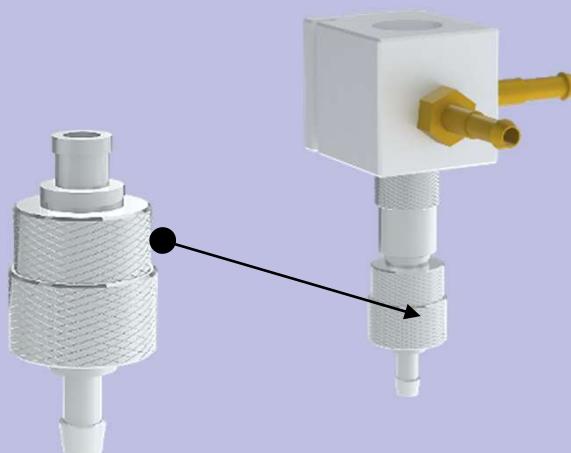
- Since Winter 2015/16 BS EN 590 has been updated to include Filter Blocking Tendency (IP 387 Procedure B) as a mandatory requirement.
- BS EN 590 describes the physical properties that all automotive diesel fuel must meet if it is to be sold in the UK. Since November 1st, 2015:
 - All UK diesel imports will be subject to new FBT limits (currently 2.52).
 - IP 387 Procedure B must be performed on every batch of fuel covered by BS EN 590.
 - This specification change applies to all diesel sold.


TFBT

FOR ASTM D2068 / IP 387


The automated TFBT (P/N 00T0945) provides a graphical guided user interface using a resistive touch screen. This screen guides the user through the test procedure. The guidance results in reliable performance of this test and the user can see what the apparatus is doing when it strictly follows the prescribed steps in the test method.

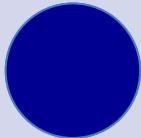
Operating the TFBT		
Item	Description	Remark
1	Touch Screen	Graphical color
2	Printer	
3	Temperature sensor	PT100
4	Fuel Reservoir Beaker	400 mL
5	Hose	Tygon
6	Piston pump	
7	On/off Switch	
8	Pressure sensor and filter	
9	Level sensor	Ultrasonic
10	Fuel Receiver Beaker	400 mL
11	Safety Window	Removable

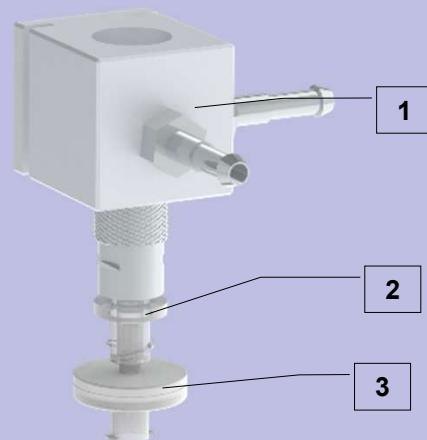
TFBT

PROCEDURE A

- Adapter block with Luer fitting (P/N 15T0005) and with filter housing (Millipore, stainless steel, nominal 13 mm diameter with a Luer fitting at the top where it connects with the TFBT).
- Filter A (P/N 24T0064), glass fiber, 1.6 μm nominal pore diameter, nominal 13 mm diameter and with an effective filtration area of 63.6 to 78.6 mm^2 . Box with 98 pieces.

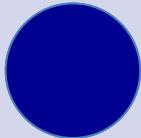


Filter "A"	
1	Sealing ring
2	Upper part filter housing
3	Sealing 'O' ring PTFE
4	Filter media
5	Steel gaze
6	Sealing ring flat washer PTFE
7	Lower part filter housing



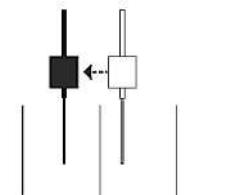
TFBT

PROCEDURE B


- Adapter block with Luer fitting (P/N 15T0005) to allow the test portion to input through the taper fitting and exit from the Luer fitting (upside down).
- Filter B (P/N 24T0067), glass fiber grade GF/A, 1.6 μ m nominal pore diameter and effective filtration area of 95.0 to 113.1 mm². Box of 98 pieces.

Filter "B"	
1	Adapter block with Luer fitting
2	Filter adaptor
3	Filter media procedure "B"

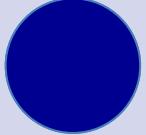
TFBT



SAMPLE PREPARATION

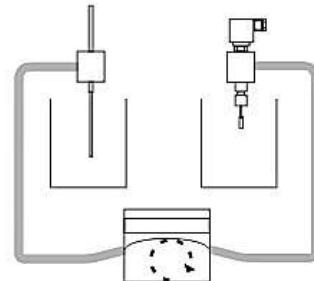
1: Place beakers

2: Place thermometer

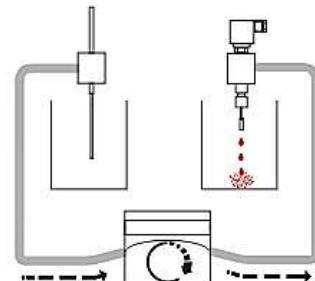

3: Place thermometer
Wait until temperature is stable

If temperature is out of range:
- Replace sample
or
- Accept deviation and continue
- Exit procedure

- Prepare sample per method instruction (check temperature, shaking, standing of sample for five minutes, etc.)
- Place two beakers (step 1 shown on the TFBT screen).
- Put at least 350 mL of the sample into the fuel reservoir beaker and check that the temperature is still within the range of 15 to 25°C. Record the actual temperature (all done automatically with the integrated PT-100, step two on the TFBT screen).
- Press 'next'.



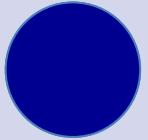
TFBT


4: Flush sample
Next step

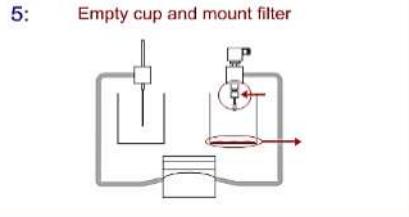
Start
Skip

4a: Flushing
Stop Flush

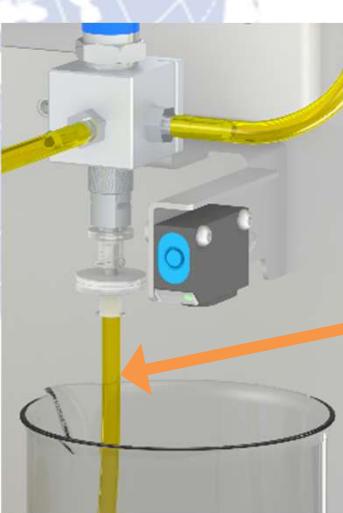
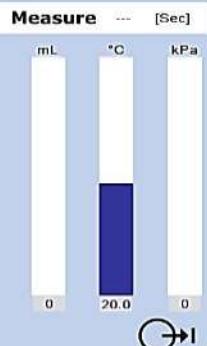
Stop



START THE TEST

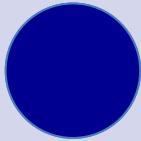

- Flush the system through with the sample by allowing approximately 20 mL of the sample to flow into the receiver beaker (step 4 on the TFBT screen).
- Stop the pump (step 4a on the TFBT screen).
- Discard any fuel from the fuel receiver beaker.

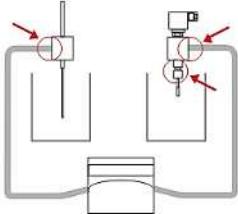
TFBT

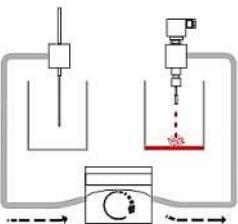



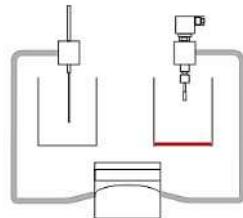
MOUNT FILTER AND ANTI-SPLASH TUBING

Mount filter, empty cup

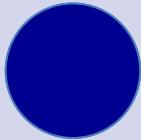

Next

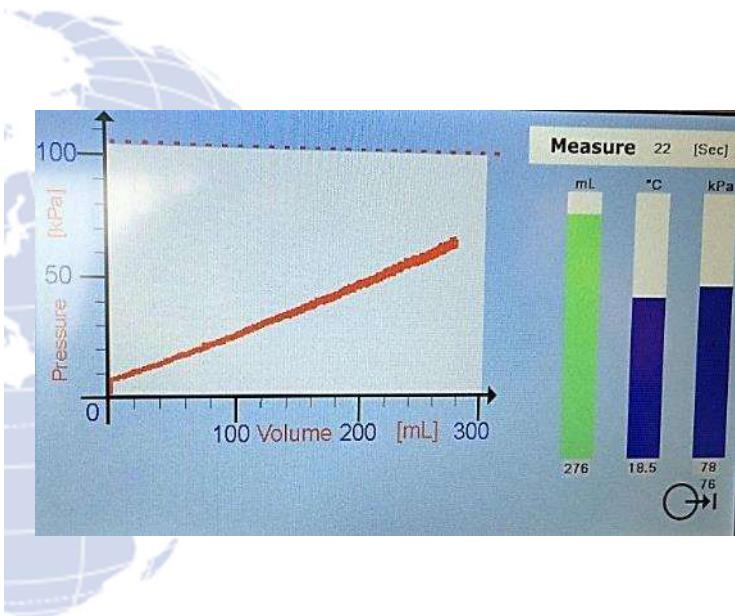

- Mount filter to the adapter (picture shows filter for method B).
- Mount anti-splash tubing.
- Press 'next'.


TFBT


6: Check connections

7a: Initial pressure build-up


7b: Start pressure in range?


- Check connections and press start (step 6).
- TFBT will pump for 20 seconds (step 7a).
- Pressure should be recorded, which should be within the range from 7 to 40 kPa. If this is not the case, check the apparatus for faults.
- If pressure is okay, please press 'next'.
- Optionally, this step can be switched-off in the menu.

TFBT

FBT TEST

- The remaining sample is drawn from the integral fuel reservoir by the pump.
- A pulse damper provides smooth and continuous flow. The pressure and temperature of the fuel are continuously monitored, while it is pumped through the specified filter into the waste container.
- TFBT shows real-time graph of pressure built up on the touch screen.

TFBT

FBT CALCULATION

300 mL Passed	
kPa	FBT
20	1.017979
40	1.070105
60	1.151751
80	1.257179
100	1.380952
105	1.414214

When 300 mL of sample is pumped at a pressure below 105 kPa, the following equation is used:

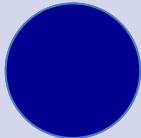
$$FBT = \sqrt{\left(1 + \left(\frac{P}{105}\right)^2\right)}$$

P = maximum pressure reading obtained for 300 mL of fuel to pass through the filter, in kPa.

TFBT

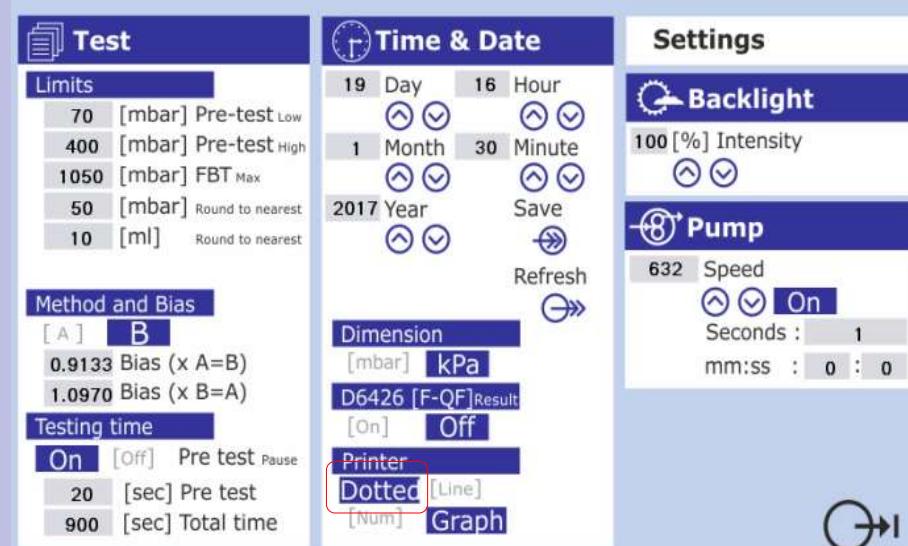
FBT CALCULATION

Overpressure	
ml	FBT
10	30.01666
20	15.0333
30	10.04988
40	7.566373
50	6.082763
100	3.162278
150	2.236068
200	1.802776
250	1.56205
300	1.414214

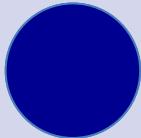

Or if maximum pressure is exceeded the following equation applies when the test has been discontinued as the pressure exceeded 105 kPa:

$$FBT = \sqrt{\left(1 + \left(\frac{300}{v}\right)^2\right)}$$

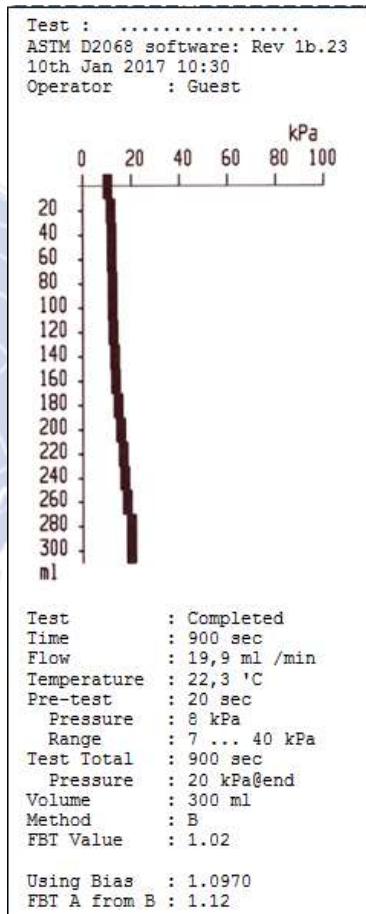
v = volume of fuel in millilitres, passed prior to the pressure rising to 105 kPa.



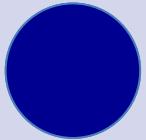
TFBT


RESULT

- TFBT automatically calculates the FBT depending on test result.
- Result is shown on display (optional is result in mBar as shown in the picture, standard is in kPa).
- Standard integrated printer prints the result.
- Bias can be entered
- Rounding of results preset to ASTM/IP test method, but is variable.

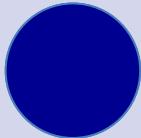


TFBT


PRINT-OUT

- Test result is displayed on screen and can be printed out, multiple copies if required.
- In the menu, different parameters can be set for the test and calibration of the temperature, pressure, pump speed, and level sensor.
- The display provides the operator with test procedure information. Following test results are printed:
 - Date and time, username, method (A or B),
 - Test result, time, flow (calculated), sample temperature, pressure, volume, procedure, FBT value and bias.

TFBT


DATABASE

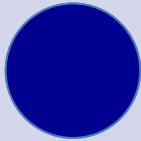
- The TFBT is equipped with an USB port to export the data to a PC
- By connecting the TFBT to a PC and using the special software, the test results can be stored automatically on the PC.
- The data can be exported to PDF, CSV and graphical formats.
- Furthermore, the user can see the graph showing the pumped volume and the pressure.
- Following test results are saved:
 - Date and time, username, method (A or B),
 - Test result, time, flow (calculated), sample temperature, pressure, volume, procedure, FBT value, bias and F-QF result.

TFBT

RECOMMENDED TFBT SET-UP

Tamson recommends procedure 'B':

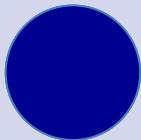
- Less risk for human error.
- Better precision in ILS.


Necessary part numbers:

- TFBT (P/N 00T0945).
- Box with 98 method 'B' filters (P/N 24T0067).

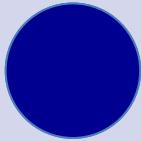
TFBT

ALTERNATIVE TFBT METHOD 'A'


Necessary part numbers
for procedure 'A':

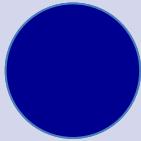
- TFBT (P/N 00T0945).
- Box with 98 method 'A' filters P/N (24T0064).

TFBT


RECOMMENDED CONSUMABLES

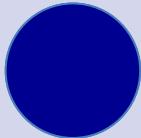
- 400 mL beaker (P/N **31T2002**). Six pieces.
- Tygon Hose 15m (P/N **24T0052**).
- Printer paper, five rolls (P/N **28T7035**).
- Anti-splash tubing 1m
 - ✓ Method "A" P/N **24T0049**
 - ✓ Method "B" P/N **24T0043**

TFBT

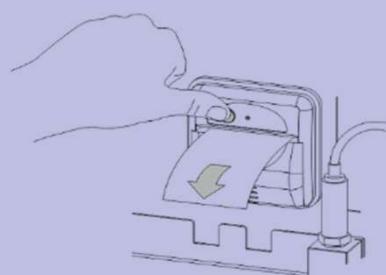
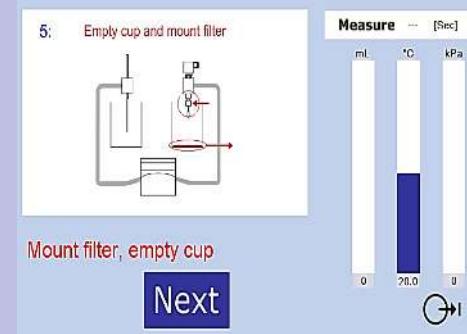

OPTION

- Level and pressure calibration kit:
 - Volume scale 10 mL
 - Pressure resolution 1 mBar
 - Works certificate (pressure readout)

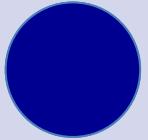
TFBT


UNIQUE SELLING POINTS AGAINST COMPETITION

- ✓ Single voltage from 85-230V, 50-60Hz.
- ✓ Excellent pump regulation guarantees a perfect constant flow. The flow is independent of the pump's counter pressure.
- ✓ All critical parts (tubing, pressure sensor, piston pump) are clearly visible. This allows the user to visually verify the working of the instrument.
- ✓ Tubing and piston pump are easy accessible for cleaning to eliminate the risk of contamination, which could lead to incorrect measurement results.
- ✓ Small footprint, requiring minimum lab space

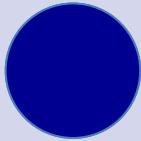




TFBT

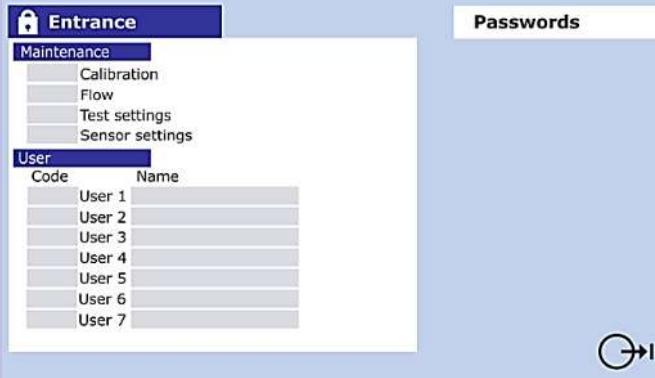

UNIQUE SELLING POINTS AGAINST COMPETITION

- ✓ Real-time curve is shown.
- ✓ Visually guided test using step-by-step instruction graphs.
- ✓ Equipped with integrated printer.
- ✓ Large graphical touch screen that can be used with gloves

TFBT


UNIQUE SELLING POINTS AGAINST COMPETITION

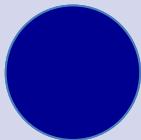
- ✓ Low operator time due to simplicity of setup and automation.
- ✓ Automated unit eliminates operator to operator variability, ensuring test repeatability and reproducibility.
- ✓ Results in less than 15 minutes.
- ✓ Unit requires a power of only 40 Watts.
- ✓ Removable beaker tray for cleaning purposes.



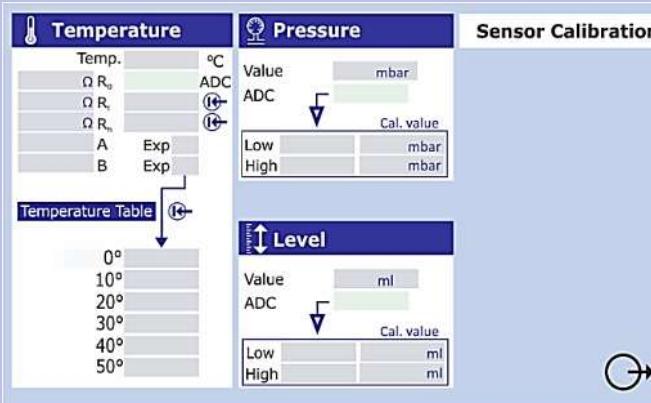
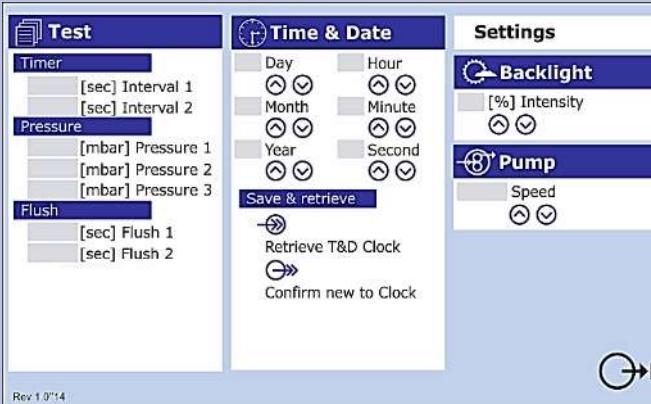
TFBT

UNIQUE SELLING POINTS AGAINST COMPETITION

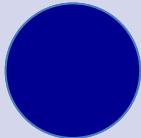
- ✓ Password protection:
 - ✓ Service screen for calibration,
 - ✓ Service screen for test parameters, seven users and one guest,
 - ✓ If passwords protection is not required it can be switched off.
- ✓ Presettable user names.


⑧ Filter Blocking Tendency

Rev 1a.13b

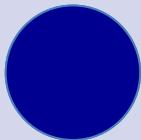
TFBT


UNIQUE SELLING POINTS AGAINST COMPETITION

- ✓ Touch screen is used to select how to perform the test, set the test parameters and calibrate the sensors.
- ✓ Service screen checks all sensors.
- ✓ Fully electronic calibration.
- ✓ Temperature calibration traceable to IEC 751.
- ✓ PT100 can be replaced and calibrated using standard 1/10 DIN and an IEC 751 certificate.

TFBT

UNIQUE SELLING POINTS AGAINST COMPETITION


Tamson FBT Service values
Rev 1b.23 - software
*** Temperature ***
R0 : 100.00 Ohm
R1 : 49.81 Ohm
Rh : 199.46 Ohm
A : 3.9080 E-3
B : -5.8020 E-7
0 degree C : 7138462
10 degree C : 7416994
20 degree C : 7694698
30 degree C : 7971574
40 degree C : 8247622
50 degree C : 8522841

*** Pressure ***
Cal Low : 0 mBar
ADC Low : 7
Cal High : 1200 mBar
ADC High : 1519
Round : 50 mBar

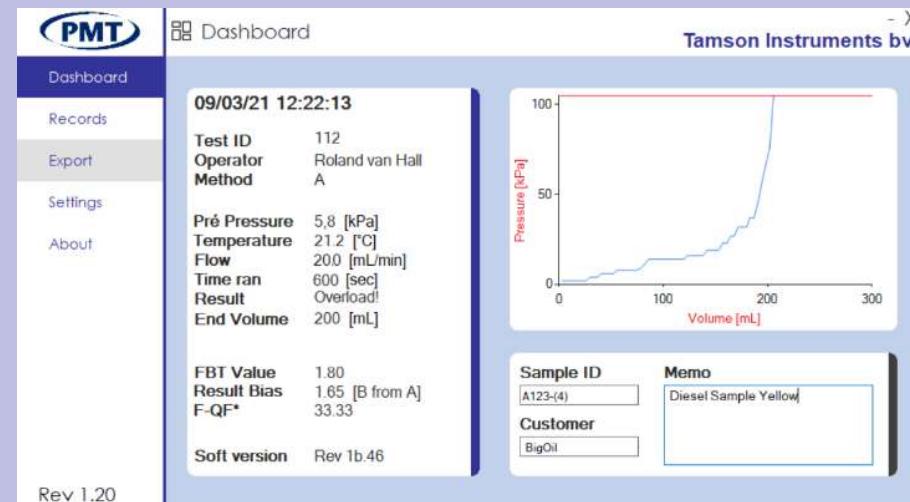
*** Level ***
Cal low : 0 ml
ADC low : 783
Cal high : 300 ml
ADC high : 48
Round : 10ml

*** Pump ***
Speed pump : 624

*** General ***
Graph : Line
Graph : Always on
Test method : B
Testresult : mBar
D6426 : Showresult
FBT A to B : 0.9133
FBT B to A : 1.0970
P Limit Low : 70 mBar
P Limit High: 400 mBar
P max : 1050 mBar
Pretest time: 20 sec
Total time : 900 sec

- ✓ Resolution of temperature ($\pm 0.1^\circ\text{C}$), pressure (non-linearity = 0.5%), flow ($\pm 0.5 \text{ ml}$) and timer ($\pm 0.001 \text{ sec}$).
- ✓ Print-out of calibration data.
- ✓ Service screen to monitor sensor and pump speed.
- ✓ Integrated stopwatch / timer.

TFBT



UNIQUE SELLING POINTS AGAINST COMPETITION

✓ Equipped with a software package to provide a database with test results on a PC

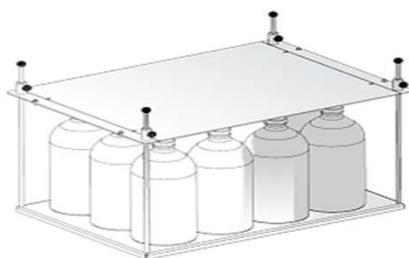
✓ Test results can be exported to PDF, CSV and graphical formats

✓ Graph showing pressure and volume is shown on the PC

Cold Soak Filtration

SIMULATE WINTER BEHAVIOR OF BIODIESEL

- The method combines a cold soak step (cooling the sample), and a subsequent filterability step, to determine filter blocking tendency.
- The combination of two test methods provides manufacturers, fuel blenders and suppliers with a means of checking operability for both B100 FAME materials and B5 or any other BX blended diesel fuels.



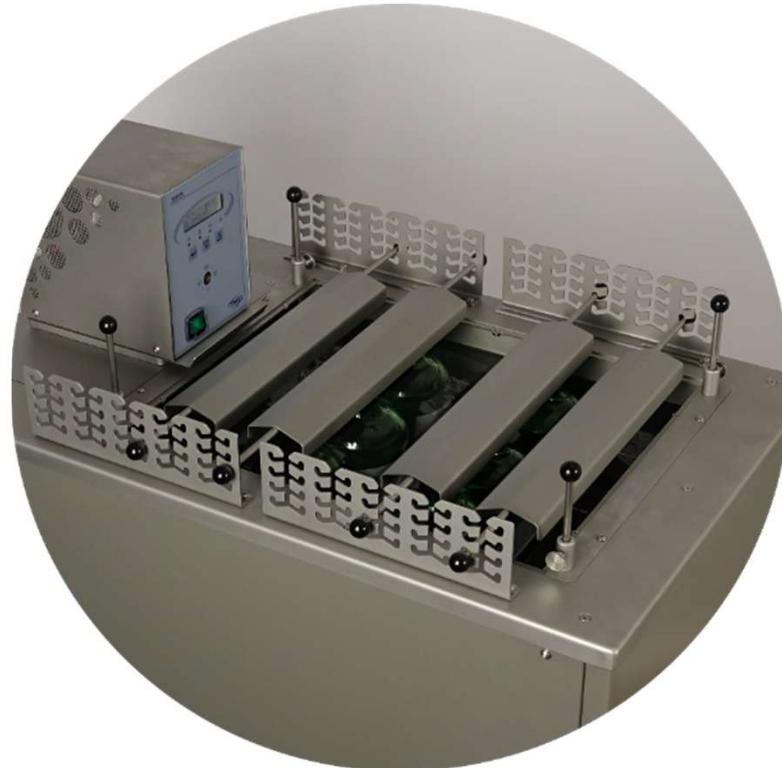
Tamson Instruments

COLD SOAK TEST REQUIREMENTS

Method	Cold Soak	Heating of Sample
IP PM EA, CEN N 403	+5°C for 16 hours	20°C for 2 hours
ASTM D7501	+4.5°C for 16 hours	25°C for 2 or 4 hours
CGSB	+1°C for 16 hours	25°C for 2 hours

Cold Soak Filtration

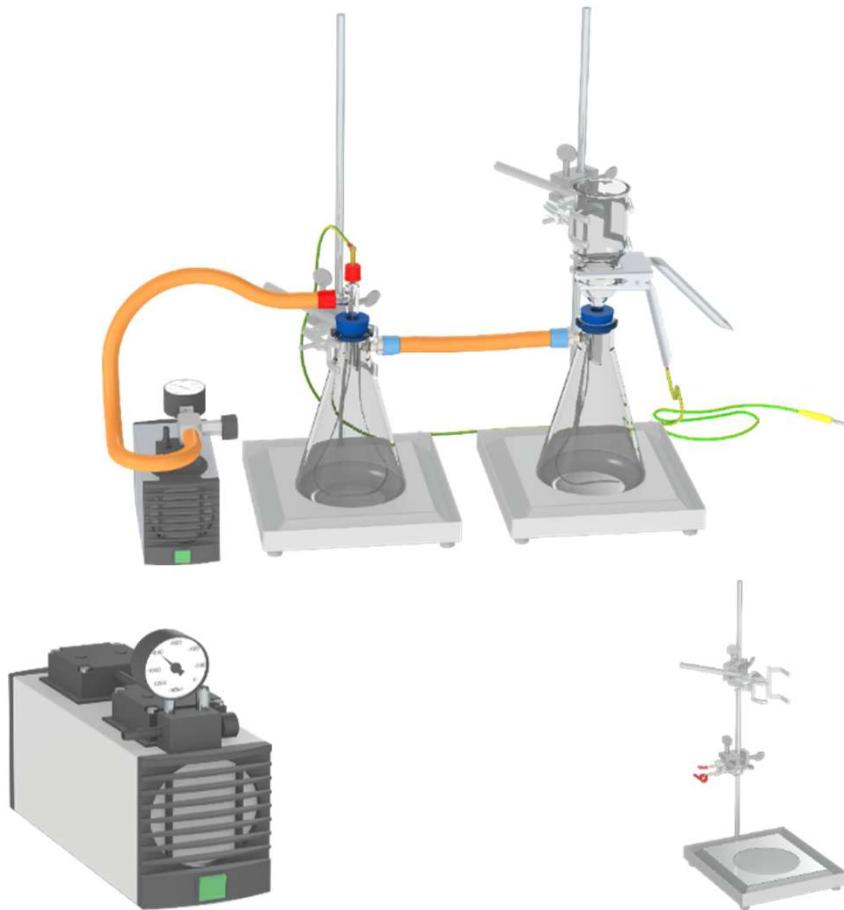
Tamson TLB50 cold soak bath to keep samples at +4.5°C for 16 hours and heat it up to +25°C for 2 or 4 hours


Position for 12 x 500 mL jars

Smart rack to position flasks

Free Tamcom software plus laptop can regulate TLB50 to follow a presetted temperature curve (e.g. 16 hours @ 5°C and than 2 hours @ 20°C.

ASTM D7501 SET-UP


Cold Soak Filtration

- ✓ TamsonTLB50 cold soak bath:
 - ✓ 230V/50 Hz (P/N 00T0082),
 - ✓ 115V/60 Hz (P/N 00T0081),
 - ✓ 230V/60 Hz (P/N 00T0083).
- ✓ Adjustable leveling platform TLB50 (P/N 03T0071).
- ✓ 2 * Rack for 500 mL jars (P/N 03T1049).
- ✓ 4 * Bottle bracket to prevent floating (P/N 03T1041).
- ✓ 4 * Rail to hold bottle bracket (P/N 03T1040).

Cold Soak Filtration

ASTM D7501 SET-UP

- ✓ Complete manual filtration set (P/N 31T2000) as per ASTM method.
- ✓ Vacuum pump P/N 11T0031 (230V) or P/N 11T0032 (115V).
- ✓ Rod stand with clamps (P/N 13T8046). Two pieces recommended.
- ✓ Please see our special specification sheet for ASTM D7501 which can be downloaded from our website www.tamson.com.

Cold Soak Filtration

ASTM D7501 ALTERNATIVE RECOMMENDATION

TLB50 for cold soak!!

TFBT for Filtration Test!!

- ✓ Please note that manual filtration set-up (P/N 31T2000) can be replaced by the TFBT procedure 'B' for the energy institute method: IP PM EA.
- ✓ Tamson also recommends to use our TFBT instead of the manual filtration set-up for reliable, easy and better filter blocking tendency tests.

The End

THANK YOU FOR YOUR TIME AND CONSIDERATION!

Please see also
our [Cold Soak and](#)
[TFBT video](#) on the
Tamson YouTube
channel.

